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Computer Simulations for Some One-Dimensional
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We report some results of computer simulations for two models of random
walks in random environment (rwre) on the one-dimensional lattice Z for fixed
space–time configuration of the environment (“quenched rwre”): a “Markov
model” with Markov dependence in time, and a “quasi stationary” model with
long range space–time correlations. We compare with the corresponding results
for a model with i.i.d. (in space time) environment. In the range of times avail-
able to us the quenched distributions of the random walk displacement are far
from gaussian, but as the behavior is similar for all three models one cannot
exclude asymptotic gaussianity, which is proved for the model with i.i.d. envi-
ronment. We also report results on the random drift and on some time corre-
lations which show a clear power decay.

KEY WORDS: Random walks in random environment; computer simulations;
Markov processes.

1. INTRODUCTION

In the late seventies and at the beginning of the eighties some remarkable
papers by Solomon,(1) and Kesten et al.,(2) ending with the well known
paper of Sinai,(3) gave a fairly complete picture of the behavior of discrete-
time random walks on Z in a random environment which is i.i.d. in space
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and fixed in time. In particular for isotropic distribution Sinai showed that
the random walk does not diffuse, and the displacement at time t is of
the order of log2 t . It is not hard to see by heuristic arguments that such
behavior is restricted to the one-dimensional case with fixed environment.
In fact similar models on Z

ν with fixed environment in dimension ν � 3
diffuse if the random term is small enough, as shown by Bricmont and
Kupiainen.(4) On the other hand, if the environment changes in time and
is i.i.d. in space–time, diffusion also occurs in all cases in any dimension
ν �1.(5)

One can ask what happens for random walks in an environment with
space isotropic distribution and some kind of memory in time. There are
very few rigorous results, and, except for case with an i.i.d. environment in
space–time, mentioned above (which we will call “space–time independent
model”), all results refer to Markov dependence in time.

As usual for such models one has to distinguish the “annealed” prob-
lem, which considers the random walk distribution induced by the envi-
ronment, from the “quenched” one, in which the environment is fixed in
space–time. If the environment is independent in space with a Markov
dependence in time there are fairly complete results in all dimension ν �1
for the annealed problem, under some condition on the relaxation con-
stant and the size of the random term.(6,7) Results for the corresponding
quenched problem are available only in dimension ν �3.(8)

In the present paper we are mainly interested in the quenched prob-
lem for two models in dimension ν =1 with environment distributions that
are independent in space with different behavior in time. The first model
has a Markov dependence in time (to be called “Markov model”), and
the other one (called “quasi-stationary”, or “Q-S”, model), has a long
range dependence in time. We will also consider the space–time indepen-
dent model mentioned above, for which much is known, for comparison.

The general model which we use for simulations is as follows. We con-
sider some finite-range random-walk transition probabilities {P(x) :x ∈Z},
and a collection ξ ={ξ(t, x) : (t, x)∈Z

2} of random variables with ξ(t, x)∈
S for some finite set S. The environment distribution is a measure ℘ on
�=SZ

2
.

Taking a fixed configuration ξ of the environment, we consider the
quenched random walk starting at the origin (X0 = 0), with jump proba-
bilities

P(Xt+1 =x +u|Xt =x, ξ)=P(u)+ c(u; ξ(t, x)), (1a)

where c(u; ·) is the random term, and is such that
∑

u c(u; s)=0 for all s ∈
S, and 〈c(u; s)〉=0 for all u∈Z, where 〈·〉 denotes expectation with respect
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to the environment. We also need for consistency that P(u) + c(u; s) ∈
[0,1]. The corresponding annealed problem refers to the distribution of
the random walk displacement Xt induced by ℘ ×P .

In the present paper, we only consider the following choices: P is
the nearest neighbor symmetric random walk: P(u) = 1/2 if |u| = 1, and
P(u)=0 otherwise, S ={±1}, and for any s ∈S, c(u; s)= (a/2)su if u=±1
and c(u; s)=0 otherwise, where a ∈ (−1,1) is a parameter. Hence

P(Xt+1 =x +u|Xt =x, ξ)=
{

1
2 (1+auξ(t, x)) u=±1
0 otherwise.

(1b)

For the measure ℘ we will consider three choices.

(i) The space–time independent model. The variables {ξ(t, x) : (t, x) ∈
Z

2} are i.i.d. with the same distribution π :π(±1)=1/2.

(ii) The Markov model. For any fixed x ∈Z the variables {ξ(t, x) : t =
0,1, . . . } are an independent copy of a Markov chain with some initial
measure π0 and transition matrix

Q=
(

ε 1− ε

1− ε ε

)

(2)

depending on a parameter ε ∈ (0,1).

(iii) The quasi-stationary (or Q-S) model. In this case ξ(t, x) =
ξ1(t)ξ2(x), where ξ1 = {ξ1(t) : t ∈ Z}, ξ2 = {ξ2(x) : x ∈ Z} are two inde-
pendent arrays of i.i.d. random variables with symmetric distribution
P(ξj (·)=±1)=1/2, j =1,2.

The space–time independent model (i) can be viewed as a special case of
(ii) for ε =1/2. For a=0 we get in all cases the usual simple nearest neigh-
bor random walk, which we will call here “free” random walk, to stress
that it does not feel the environment.

We will mainly be concerned with the quenched random walk. The
annealed problem is trivial for the independent case, in the sense that the
distribution of Xt induced by the product measure coincides with that of
the free random walk P t =: P ∗P ∗ · · · ∗P︸ ︷︷ ︸

t times

, where ∗ denotes convolution.

The same holds, as it is easy to see, for the Q-S model.
For the Markov case it is known from the results in refs. 6,7, and 9

that the annealed model has a diffusive behavior for any fixed a ∈ (−1,1)
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if the second eigenvalue of the matrix Q, µ=1−2ε is small enough, and
for all ε ∈ (0,1) if |a|<1/2.

For the quenched problem it was proved that the space–time indepen-
dent model is diffusive for ℘-almost all ξ ∈ �, with the same parameters
as for the free random walk.(5) However the model does not quite behave
as the free random walk, as, e.g., there is a random drift Et (ξ )= E(Xt |ξ)

(where E denotes expectation with respect to ℘ ×P ) which is of the order
t

1
4 and is gaussian distributed as t →∞.(10) As shown in ref. 11, this fact

implies that the first correction to the CLT asymptotics for the functionals∑
x f ( x√

t
)P (Xt =x|ξ) has anomalous large size.

No results are available for the quenched problems of the Markov
and Q-S models. In both cases if there is some kind of “regular” behav-
ior for the quenched random walk, it should be close to that of the
annealed model. The main purpose of the present paper is to investi-
gate such behavior by means of computer simulations. Simulations for the
space–time independent models are used as a guideline for the interpreta-
tion of the results of the other models, in particular for what concerns the
size of “asymptotic” times.

Here is a brief description of how computer simulations are per-
formed. We start by generating a realization of 2L + 1 independent vari-
ables ξ(0, x) : −L� x �L which take values ±1 with probability 1/2. The
jump of Xt is determined with the probabilities (1b) depending on the field
variable, and at each time the 2L+1 variables are changed. The new vari-
ables are chosen independently of the previous ones in the independent
case, and according to the Markov rules for Markov case. In the Q-S case
the new variables are obtained by multiplying the previous ones by a fac-
tor ±1, chosen with equal probability. If Xt =±L before jumping, then 20
more positions L<x �L+10 and −L−10�x <−L are added, with cor-
responding variables ξ(t, x).

The paper is organized as follows. In Section 2 we report results on
the random drift Et (ξ )=E(Xt |ξ), which in all models has a size O(t

1
4 ) and

appears to be gaussian distributed. (For the space–time independent mod-
els this is proved in ref. 11.) In Section 3 we discuss on the basis of results
of computer simulations whether the quenched distribution of Xt has a
gaussian asymptotics for large t . Although the quenched dispersion is lin-
ear in time with good accuracy, the parameters of the χ2 and Kolmogo-
rov-Smirnov (K-S) tests stay very far away from reasonable values even
at the largest times available for us (of the order of 106). The behavior is
the same for all models, including the space–time independent model, for
which asymptotic gaussianity is proved. In fact the values of the K-S test
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decrease with time, in the average, so that asymptotic gaussianity is not
excluded for the quenched Markov and Q-S models.

Finally in Section 4 we report results on the decay of correlations of
the jumps in time.

2. RANDOM DRIFT

In all three models the annealed drift vanishes by symmetry: EXt =0.
For the random (or “quenched”) drift, setting d(s) := ∑

u uc(u; s), and,
taking into account that

∑
u c(u; s)=0, we see that

Et (ξ )=
∑

x

P (Xt =x|ξ)x =Et−1(ξ)+
∑

y

P (Xt−1 =y|ξ)d(ξ(t −1, y))

(where we omitted to specify the condition X0 =0), and iterating we finally
find

Et (ξ )=
t−1∑

τ=0

∑

y

P (Xτ =y|ξ)d(ξ(τ, y)). (3)

If now the terms are orthogonal, i.e., 〈P(Xτ = y|ξ)d(ξ(τ, y))P (X′
τ =

y′|ξ)d(ξ(τ ′, y′))〉 = 0 for (τ, y) 	= (τ ′, y′), or approximately such, and the
probabilities P(Xτ =y|ξ) are typically of the order τ−1/2, then it is easy to
see that the L2 norm of the random drift is of the order t1/4. In fact for
the space–time independent model it was proved in ref. 10 that, as t →∞,
t−1/4Et (ξ ) tends to a gaussian variable. For the other two models there are
no results.

We present here results of computer simulations for only one choice
of the parameters, and precisely we take a =0.7 for all three models, with
ε =0.9 for the Markov model. We generate by a random number generator
N =1000 independent copies of the environment ξ , up to time T =60,000,
and for each choice of ξ we compute at different values of t �T the empir-
ical average of Xt over n=10,000 runs of the random walk.

Computer simulations (reported in Section 3) for all three models
show that the quenched dispersion of Xt is bounded, in that range of
times at least, by σ 2t with σ 2 <1.2. (For model (i) there is, as we said, a
rigorous result.) Hence, assuming, as it will turn out to be the case, that
for models (ii) and (iii) the random drift is of the order of t1/4, the empir-
ical average will be close to the random drift if time t and the number
of runs n are such that

√
t/n is small. In our case this quantity does not

exceed 0.025.
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Figures 1a,b give the empirical variance of Et (ξ ) over the N = 1000
choices of ξ , for the Markov and the Q-S model, respectively. Figure 1c
gives the same results for the space–time independent model. As we see in
all three cases the variance behaves as t1/2 with very good approximation,
testified by the high values of R2.
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Fig. 1. Dispersion of Et vs. t : (a) Markov Model; (b) Q-S Model; (c) Independent Model.
(Formulas correspond to log–log plots.)
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Table I. Test of Gaussianity for Et . χ2
0.95,38 Is the Quantil

for 38 Degrees of Freedom with Confidence Level 95%,

and D1000;0.95 is the Quantil for the K-S Test with 1000

Data and the Same Confidence Level

Model χ2 test χ2
0.95,38 K-S test D1000;0.95

Independent 38.44 53.38 0.02651531 0.043
Markov 27.56 53.38 0.01591915 0.043
Q-S 34.36 53.38 0.02062783 0.043

We tested the gaussian character of Et for al three models at t =
60,000 by the K-S- and the χ2-test, which are the standard tests in such
cases (for details, see, e.g., ref. 12).

The K-S-test is perhaps not so well known as the χ2-test, so we
briefly define the quantil DN;α, for sample number N and confidence level
α ∈ (0,1). Let SN(x) be the distribution function of the empirical average
of N independent samples of a random variable with distribution function
F(x). We consider a new random variable DN =maxx |F(x)−SN(x)|, and
define the quantil by setting DN;α =x if P({DN <x})=α.

The results are reported in Table I. We see that the time we chose is
large enough for the distribution to be gaussian with good accuracy in all
three cases.

3. DO THE QUENCHED MODELS DIFFUSE?

One of the main open problems for the Markov and Q-S models is
to establish whether the quenched distribution of Xt is diffusive or, maybe
underdiffusive (it cannot be overdiffusive as the annealed models are
diffusive).

An obvious remark in this respect is that if there is a typical asymp-
totic behavior of the quenched dispersion D2

t (ξ ) =: E((Xt − Et (ξ ))2|ξ) for
large times, then by the previous considerations on the annealed model
and our results on the random drift, it has to be linear in time. In fact the
relation E(X2

t ) = 〈E2
t (·)〉 + 〈D2

t (·)〉 implies that, as the annealed dispersion
E(X2

t ) grows linearly in all three models, and, as we have seen 〈E2
t (·)〉
 t

1
2 ,

a typical asymptotic behavior of the quenched dispersion has to be linear
in t .

Such behavior (which for the space–time independent model is a rig-
orous results) is supported by computer simulations. Figures 2a–c give the
corresponding plots for the three models, for a fixed choice of ξ , in the
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Fig. 2. (a) Dispersion vs. time: Markov Model. (b) Dispersion vs. time: Q-S Model.
(c) Dispersion vs. time: Independent Model.

range up to t =200,000. For each time the dispersion is taken over a sam-
ple of n=20,000 independent runs of the random walk.

We have a linear growth in all three cases, with very good approxi-
mation, and picking different choices for the field ξ does not change the
picture in significant way.

We have also applied direct tests of gaussianity for the quenched
displacement Xt : the χ2 and the K-S test. The values that we find are
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Fig. 3. D105 vs. time: (a) Markov Model; (b) Q-S Model; (c) Independent Model.
(For reference: D105;0.95 ≈4 ·10−3.)

however very far from what they should be, and the discrepancy persists
even at times of the order 106, which taking into account that we need a
large sample, are at the borderline of the reliability of our random number
generator. The results of the tests seem however to improve very slowly as
time grows. The trend is hardly detectable if we consider a single choice
of ξ , as the results of the tests fluctuate heavily. But by taking averages of
the results of the tests over several choices of ξ a slow monotonic fall off
appears clearly, as shown for the K-S-test by Figs. 3a–c.
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Fig. 4. (a) Quenched correlations vs. t : Markov Model. (b) Quenched correlations vs. t :
Independent Model. (c) Quenched correlations vs. t : Q-S Model. (d) Quenched correlations
vs. t : (Q-S Model with average).

The situation is more or less the same for all three models, includ-
ing the space–time independent model, for which asymptotic gaussianity
of the quenched distribution of Xt at large times, as we said above, is
proved. It is perhaps not surprising that “asymptotic times” are so large,
since the size of the random drift indicates that correction terms to the
integral C.L.T. are of the order t−

1
4 .

One can conclude that, in spite of the results of the K-S test (and
of the χ2 test, which are also very far from the proper range) there is no
evidence to support the claim that possible limiting distributions for large
times of the quenched random walks for the Markov and the Q-S models
are non-gaussian.

4. BEHAVIOR OF THE QUENCHED TIME CORRELATIONS

We also considered the rate of decay in time of the quenched corre-
lations of the increments. Setting �t =Xt+1 −Xt we define such quantities
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as

Ct1,t2(ξ)=E(�t1�t2 |ξ). (4)

Again, for any single choice of ξ such quantities fluctuate heavily, and in
order to find out a clear-cut pattern we take the average over 200 choices
of the field. We computed the behavior of such averages as a function of
the time difference r = t2 − t1 for a fixed value of t1 =1000, which appears
to be large enough for a stable pattern.

The results are shown in Figs. 4a–c. It appears that the Q-S model
has some kind of periodicity in time with period 2 and for a better com-
parison with the other models we took averages over a period (Fig. 4d).

The results show a fairly clear behavior, with a power decay very close
to t−1/3 for the Markov model and the space–time independent model and
a faster decay, as t−1/2 for the Q-S model.
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